If two different numbers are taken from the set $\{0, 1, 2, 3, ..., 10\}$; then the probability that their sum as well as absolute difference are both multiple of 4, is.

 $A \qquad \frac{6}{55}$

B $\frac{12}{55}$

 $c \frac{14}{45}$

 $D \qquad \frac{7}{55}$

Correct option is A)

Let us take this case by case. First, take number 0. The second number p has to be chosen such that p-0 and p+0 are divisible by 4. Hence, p can be either 4 or 8. Now, take number 1. We find that 3+1 is divisible by 4 but 3-1 is not. Similarly, 5-1 is divisible by 4 but 5+1 is not. You can see that for all odd numbers, no such p exists, so only even numbers should be checked.

First Number	Second Number	No. of cases
0	4, 8	2
2	6, 10	2
4	0,8 (However, case of 0, 4 is already taken)	1
6	2, 10 (However, case of 2, 6 is already taken)	1
8	0,4 (However, both cases have been taken)	0
10	2, 6 (However, both cases have been taken)	0

Hence, total number of cases possible are 2 + 2 + 1 + 1 = 6

Total ways to choose 2 numbers from $\{0, 1, 2, ..., 10\}$ are ${}^{11}C_2 = 55$

Hence, probability =
$$\frac{6}{55}$$